

Problem Solving

PSEUDOCODE & ALGORITHM

by Noor Azida Binti Sahabudin Faculty of Computer Systems & Software Engineering azida@ump.edu.my

OER Problem Solving by Noor Azida Binti Sahabudin work is under licensed <u>Creative Commons Attribution-NonCommercial-NoDerivatives 4.0</u> <u>International License</u>.

Chapter Description

Expected Outcomes

 Students able to use pseudocode and algorithm to develop the instruction for each module in the solution of a problem

References

 Sprankle, M., and Hubbard, J., (2012). Problem Solving and Programming Concepts : 9th Edition. Prentice Hall, 2012. ISBN : 0132492644

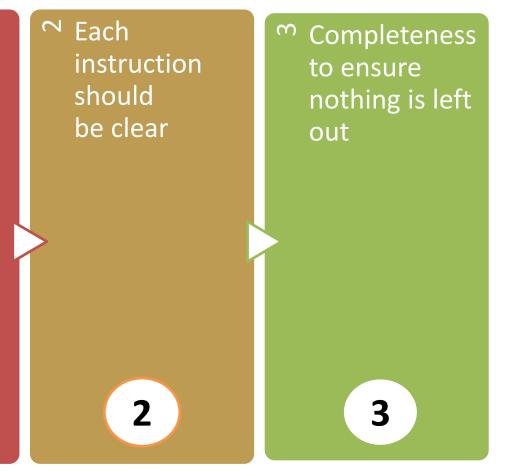
– Retrieve from:

http://userpages.wittenberg.edu/bshelburne/Comp150/Algorithms.htm

What is Pseudocode?

List of instruction to solve tasks

Informal way to design of a computer program / algorithm



3 Standards Rules to Produce Pseudocode

Each

 instruction
 have number
 to enforce
 ordered
 sequence of
 operations
 (with
 subordinate.
 Example 3,
 3.1, 3.2 ... 4)

1

Example 1: Pseudocode

Computing Sales Tax : Pseudo-code the task of computing the final price of an item after figuring in sales tax.

Note the three types of instructions: input (read), process/calculate (=) and output (print)

- 1. Start
- 2. read price of item
- 3. read sales tax rate
- 4. sales tax = price of item times sales tax rate
- 5. total price = price of item plus sales tax
- 6. **print** final price
- 7. End

Variables: price of item, sales tax rate, sales tax, total price

Example 2: Pseudocode

Computing Salary: Salary pay depends on the pay rate and the number of hours worked per week. However, if you work more than 30 hours, you get paid time-and-a-half for all hours worked over 30.

Pseudo-code the task of computing gross pay given pay rate and hours worked.

- 1. Start
- 2. read hours worked
- 3. read pay rate
- 4. if hours worked ≤ 30 then
 - 4.1 salary = pay rate times hours worked
- 5. else
 - 5.1 salary = pay rate times 40 plus 1.5 times pay rate times (hours worked minus 40)
- 6. print salary
- 7. End

Variables: hours worked, pay rate, salary

Retrieve from: http://userpages.wittenberg.edu/bshelburne/Comp150/Algorithms.htm

What is Algorithm?

An ordered sequence

Each instruction is clear, do-able, can be done without difficulty

Performs some task

Can be executed by a computing agent which is not necessarily a computer

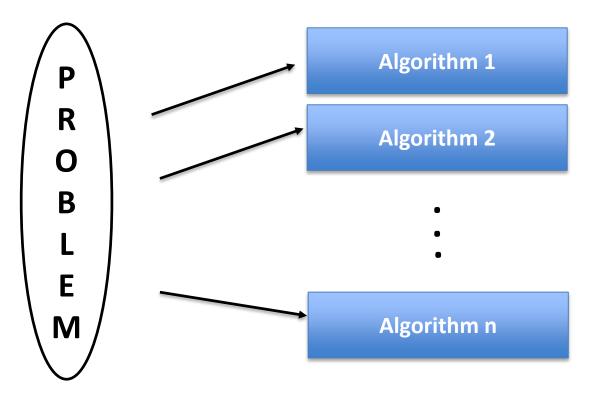
Retrieve from: http://userpages.wittenberg.edu/bshelburne/Comp150/Algorithms.htm

Properties of an Algorithm

Input

 Algorithm need to has zero or more inputs from a set of objects

Output


 Algorithm must has one or more outputs that related to the input

Effectiveness

 All operations must sufficiently can be done

Problem VS Algorithm

Each problem can have many algorithm

Common Elements of Algorithms

Need data/input

- Values from external source
- Algorithm require data to define problem

Involve calculation

- Arithmetic computation
- Comparison
- Testing logical condition

Result / output

Reported results to the user

Category of Algorithms Operations

Sequential

 Execute instructions in order

Selection

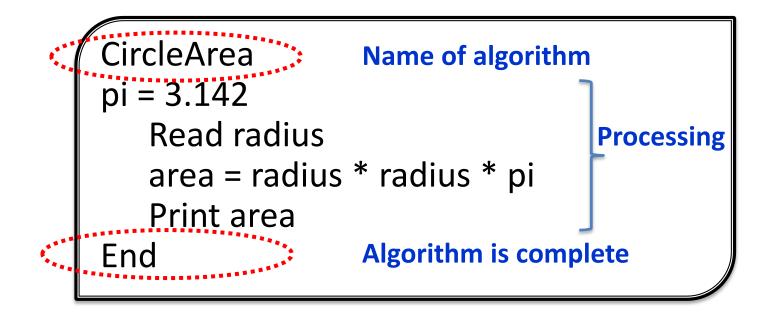
- Choosing among two or more action based on input data
- asks a true/false question

Iteration / looping

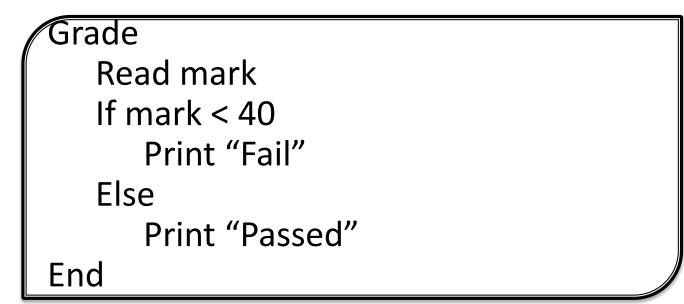
 Execute repeated a set of instruction until logical condition holds

Example 1: Algorithm in Daily Life

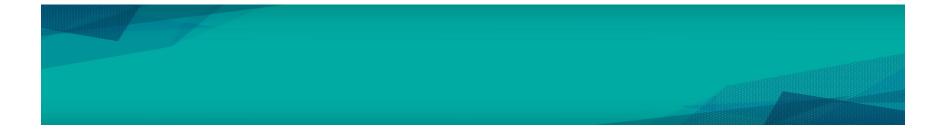
Problem: Make a cake


Put five eggs in a bowl

Add a cup of sugar Stir Add a cup of buttermilk Add a teaspoon of vanilla extract Add two cups of flour Add two spoon of coco powder Mixed the ingredient Put into a cake container Put into oven Set the temperature Set the timer


Example 1: Algorithm

Problem: Find an area of a circle.


Example 2: Algorithm

Problem: Determine students "Fail" or "Pass" based on their mark. Mark less than 40 means the student fail, otherwise is passed.

Once you have finished developing your algorithm, you need to check your solution algorithm (DESK CHECKING – for more info refer Chapter 5)

Test your understanding by answer Tutorial 3

Conclusion / What we have learn today?

What is Pseudocode?

Standard rules of Pseudocode

What is algorithm?

Elements of algorithm

Algorithm operations

Author Information

NOOR AZIDA BINTI SAHABUDIN

Senior Lecturer <u>Faculty of Computer Systems & Software Engineering</u> <u>Universiti Malaysia Pahang</u> PhD in Educational Technology