Problem Solving

PAC, IC, IPO

by
 Noor Azida Binti Sahabudin
 Faculty of Computer Systems \& Software Engineering azida@ump.edu.my

Chapter Description

- Aims
- To analyze the problem using Problem Analysis Chart (PAC)
- Set up the most efficient solution using Interactivity Chart (IC)
- Use an IPO chart to designate the input, processing, module number and output for a solution of a problem
- Expected Outcomes
- Use a problem analysis chart to consolidate data for the problem
- Use an interactivity chart designates the modules to be used in the solution of a problem.
- Use an IPO chart to designate the input, processing, module number and output for a solution of a problem.
- References
- Sprankle, M., and Hubbard, J., (2012). Problem Solving and Programming Concepts : 9th Edition. Prentice Hall, 2012. ISBN : 0132492644

Problem???

What is PAC?

PAC (Problem Analysis Chart)

According to Sprankle and Hubbard, (2012), the initial step for a programs need to do when get a problem is to analyze and understand the requirements.

To easily analyze the problem, a Problem Analysis Chart (PAC) was introduced. This chart have four section:

- The given data
- The required result
- The processing involved
- A list of solution alternative

Problem Analysis Chart (PAC)

Table 1 show the four section and how PAC looks like.

Table 1: The four parts in PAC

Given Data	Required Result
Section 1 Data given in the problem / provided by the user	Section 2 Requirements for the output reports including the information needed and the format required
Processing Required	Solution Alternative
Section 3 List of processing required including equations or other types of processing	Section 4 List of ideas for the solution of the problem

Example 1: PAC

PROBLEM:

A program is required to find average of five numbers.

Given Data	Required Result
Number 1 Number 2 Number 3 Number 4 Number 5	Average of 5 numbers
Processing Required	Solution Alternative
Total = Number 1 + Number 2 + Number 3 + Number 4 + Number 5 Average = Total / 5	i.Define the numbers as constants. *Define the numbers as input values

Try This!!!

PROBLEM:

A program is required to find the volume of a cube. Please construct the PAC for this problem.

Given Data	Required Result
Processing Required	Solution Alternative

Interactivity Chart (IC)

Dividing the processing into subtask called MODULE

Have main module and sub modules

Main module controls the flow of the sub modules
Main module controls
the flow of the sub
modules

> Each modules
> contain task to accomplish

between modules

Interactivity Chart (IC)

Two type of writing a solution

Procedural Programming

$>$ Type of writing a solution
> Top-down method (processed from the top to the bottom)
$>$ The module only process the tasks that connected to it

Object Oriented
 Programming

$>$ Event driven - the user is in control
> User decides order of execution of the module
$>$ each subtask modules are surround the control module

IC - Procedural Programming

IC - Procedural Programming

Control Module On top Labeled (0000)

Subtask The next level of rectangles starting with the number 1000, 2000, 3000 Module(s) and increases from left to right by increments of 1000.

Controls the processing of all the data. The chart is display in topdown method and it means that as you divide the problem into subtasks, they demonstrate the order in which processes will occur from the top to the bottom of the chart.

IC - Procedural Programming

IC - Procedural Programming

IC - Procedural Programming

IC - Object Oriented Programming

IC - Object Oriented Programming

What is IPO?

> Extends information in PAC and modules in IC
> Have 4 parts
> Emphasizing the three components of problem (input, processing and output)

IPO (Input-Processing-Output)

Input	Processing	Module reference Number / Names	Output
All input data from PAC - section 1	All processing in steps from PAC - section 3 and 4	Module name from IC	All output from PAC - section 1 and 2

Example: IPO (Input-Processing-Output)

Problem: Calculate fees of a student in a tuition center. User need to insert level of study ($1=$ UPSR, $2=$ PT3, $3=$ SPM and $4=$ STPM) and subject ($1=$ $\mathrm{BM}, 2=\mathrm{BI}, 3=$ Math, $4=$ Science etc.)

Input	Processing	Module reference	Output
level	1. Enter level	Read	Tuition fees
subject	2. Enter subject	Read	
	3. Calculate fees	Calc	
	4. Print fees	Print	
	5. End	TuitionFeesControl	

Example: IPO (Input-Processing-Output)

Problem: Calculate average of 3 numbers

Input	Processing	Module reference	Output
Number1	1. Enter Number1	Read	average
Number2	2. Enter Number2	Read	
Number3	3. Enter Number3	Read	
	R. Calculate average $=$ (Number1+Number2 Calc		
	+Number3)/3	Print	
	5. Print average	AverageControl	
	6. End		

Try This!

Problem:

1. Write a Problem Analysis Chart (PAC) to find an area of a rectangle where area $=(1 / 2) *$ height * length. Then create IC and IPO.
2. Write a Problem Analysis Chart (PAC) to convert the distance in miles to kilometers where 1.609 kilometers per mile. Then create IC and IPO.

Answer IPO

Answer Problem 1:

Given Data	Required Result
height, length	area
Processing Required	Solution Alternative
area $=(1 / 2)$ * height * length	i.Define the height and length as constants. *Define the height and length as input values

Answer IC

Answer Problem 1:

Answer IPO

Answer Problem 1:

Input	Processing	Module	Output
height	1. \quad Enter height	1000	Area of a
length	2.	Enter length	1000
	rectangle		
	3. Calculate area $=(1 / 2)^{*}$	2000	
	4.height x length		
	5.	End	3000

Answer

Answer Problem 2:

Given Data	Required Result
Distance in miles	Distance in kilometers
Processing Required	Solution Alternative
kilometers $=1.609 \times$ miles	i.Define the miles as constants. *Define the miles as input values

Answer IC

Answer Problem 2:

Answer IPO

Answer Problem 2:

Input	Processing	Module	Output			
miles	1.	Enter miles	1000			
	2.	Calculate kilometers $=$	2000			
	$1.609 \times$ miles					kilometers in
	3.	Display kilometers	3000			
	4.	End	0000			

Conclusion / What we have learn today?

Problem Analysis Charts - a beginning analysis of the problem

Interactivity Charts - shows the overall layout or structure of the solution

IPO Chart - shows the input, the processing and the output

Author Information

NOOR AZIDA BINTI SAHABUDIN

Senior Lecturer
Faculty of Computer Systems \& Software Engineering Universiti Malaysia Pahang
PhD in Educational Technology

