Lab Exercise 8

A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices P, Q, and R is denoted $\triangle \mathrm{PQR}$ as depicted in Figure 2, where p, q and r are the sides of length and their corresponding angles are α, β and γ.

Figure 2: $\triangle \mathrm{PQR}$ with its sides of length and their corresponding angles
According to the law of cosine, given two known lengths of a triangle p and q, and the angle between the two known sides γ (or the angle opposite to the unknown side r), to calculate the third side c , the following formula can be used:

$$
r=\sqrt{p^{2}+q^{2}-2 p q \cos (\gamma)}
$$

Similarly, p and q can be calculated by using the following formulas:

$$
\begin{aligned}
& q=\sqrt{p^{2}+r^{2}-2 p r \cos (\beta)} \\
& p=\sqrt{q^{2}+r^{2}-2 q r \cos (\alpha)}
\end{aligned}
$$

The area of the triangle can be calculated by using the following formula:

$$
\Delta P Q R=\frac{1}{2} h r
$$

Where, height denoted as h can be easily calculated by using law of sine:

$$
h=p \sin (\beta)
$$

There are three prominent subclass of Triangle such as:
Table 1: Type, Criteria and formula for the Equilateral Triangle, Isosceles Triangle and Right Triangle.

Type	Criteria	Example

Equilateral Triangle	It has the same length for all sides with all angles measuring 60° Assuming that $p=q=r$ and α $=\beta=\gamma$.	
Isosceles Triangle	It has two sides of equal length with two similar angles Assuming that $p=q$ and $\alpha=\beta$	$\begin{gathered} r=\sqrt{p^{2}+q^{2}-2 p q \sin (180-2 \alpha)} \\ h=\sqrt{p^{2}+\left(\frac{r}{2}\right)^{2}-2 p\left(\frac{r}{2}\right) \cos \alpha} \end{gathered}$
Right Triangle	It has one of its interior angles measuring 90° (a right angle) and also called right-angle triangle. Assuming that $\alpha=90^{\circ}$ and p is the hypotenuse of the triangle. $\text { area }=0.5 \times p \times r$	$r=\sqrt{p^{2}-q^{2}}$

Consider the Class diagram in Figure 2 and formula given in Table 1.

Figure 3: UML Class Diagram
Based on the problem statement given, you need to construct a Java application using all classes to compute the area of Normal Triangle, Equilateral Triangle, Isosceles Triangle and Right Triangle.

