## THEORY OF STRUCTURES

## CHAPTER 1 : DETERMINACY PART 2

by<br>Saffuan Wan Ahmad<br>Faculty of Civil Engineering \& Earth Resources<br>saffuan@ump.edu.my

## Chapter 1 : Part 2 - Determinacy

- Aims
- Identified the determinacy criteria of structure
- Determine the number of redundancy for the structure.
- Draw FBD for structures
- Expected Outcomes:
- Able to identify the stability and determinacy of structures
- References
- Mechanics of Materials, R.C. Hibbeler, 7th Edition, Prentice Hall
- Structural Analysis, Hibbeler, 7th Edition, Prentice Hall
- Structural Analysis, SI Edition by Aslam Kassimali,Cengage Learning
- Structural Analysis, Coates, Coatie and Kong
- Structural Analysis - A Classical and Matrix Approach, Jack C. McCormac and James K. Nelson, Jr., 4th Edition, John Wiley


### 1.1 ACTUAL AND IDEALIZED STRUCTURE


a) Actual Structure

b) Idealized Structure

### 1.2 FREE BODY DIAGRAM

- Any force system acting on a structure is easily analyzed if the appropriate reactions required to maintain equilibrium are inserted in a diagrams



### 1.3 EQUATION OF EQUILIBRIUM

- When the force act in the $x-y$ plane, the equation will be



### 1.4 CONDITION OF DETERMINANCY FOR

$\square$ To state of static equilibrium, it is necessary to establish the DETERM INACY and STABILITY
$\square$ Equilibrium equation provide sufficient conditions for equilibrium. All forces can be determined strictly from these equation
$\square$ Structure is referred as STATICALLY DETERM INATE
$\square$ However, structure having more unknown forces than available equilibrium equation referred as STATICALLY INDETERM INATE
$\square$ This can be determined using a free body diagram

### 1.4 CONDITION OF DETERMINANCY FOR BEAMS

## Examples:


a) Simply Supported Beam

b) Cantilever Beam

b) End-support or Propped Cantilever Beam

c) Built-in Beam
c) Overhanging Beam

### 1.4.1 CONDITION OF DETERMINANCY FOR TRUSSES



### 1.4.1 CONDITION OF DETERMINANCY FOR TRUSSES

Examples:


### 1.5 DETERMINACY OF BEAM

- Beam, pin connected and frame are classified as determinate depending upon the internal forces in the member or external support reaction.

$$
\begin{aligned}
& r=3 n, \text { statically determinate } \\
& r>3 n, \text { statically indeterminate }
\end{aligned}
$$

$n=$ the total parts of structure members.
$r=$ the total number of unknown reactive force and moment components

## Example 1



$$
r=3, n=1,3=3(1)
$$

Statically determinate

Example 2


HINGE CONNECTI ON CONSI DERED TO HAVE 2 REATION

$$
r=6, n=2,6=3(2)
$$

Statically determinate

Example 3


$$
r=9, n=3,9=3(3)
$$

Statically determinate

Example 4


$$
r=10, n=3
$$

$10 \neq 9$

## Statically indeterminate

Exercise 1


## Exercise 2



### 1.6 DETERMINACY OF TRUSSES

### 1.6.2 Trusses

- Trusses also classified as determinate depending external support reaction.

$$
2 j=b+r
$$

$j=$ number of $J$ OINT/S
$b=$ number of MEMBER/S of the trusses
$r=$ is number of REACTION/S

$$
\text { Example } 3
$$

$$
b=9 \quad j=6 \quad r=3
$$

$$
b+r=12
$$

$$
2(\mathrm{~J})=12
$$

0
the structure is just stiff ( statically determinate)

### 1.7 DETERMINACY CRITERIA FOR STRUCTURES

- Three categories of determinacy for structures


## Under stiff

If there are more equilibrium equation than the unknown forces, the system is not a structure and it is unstable.

```
Just stiff
```

If the equilibrium equation is equal to unknown forces.

```
Over stiff
```

If the equilibrium equation is less than to unknown forces.

### 1.7.1 Redundancy

Frame / beam

$$
\begin{array}{ll}
r=3 n & \text { (just stiff / statically determinate) } \\
r>3 n & \text { (under stiff / forms a mechanism) } \\
r<3 n & \text { (over stiff / statically indeterminate) }
\end{array}
$$

## Or

## Check the number of redundancy Number of redundancy $=r-3 n$

## Example 1



$$
r=10, n=3 \quad 10 \neq 9
$$

Statically indeterminate

## $10-3(3)=1$ <br> Statically indeterminate to the first degree

Trusses
$2 \mathrm{j}=\mathrm{b}+\mathrm{r} \quad$ (just stiff / statically determinate)
$2 \mathrm{j}>\mathrm{b}+\mathrm{r} \quad$ (under stiff / forms a mechanism)
$2 j<b+r \quad$ (over stiff / statically indeterminate)

## Or

## Check the number of redundancy <br> Number of redundancy $=b+r-2 j$


$b=14 \quad j=8 \quad r=3$

$$
b+r=17
$$

$$
2(J)=16
$$

1
the structure is over stiff ( statically determinate) to $1^{\text {st }}$ degree
@(囚)

## THANKS

by Saffuan Wan Ahmad

## Author Information

Mohd Arif Bin Sulaiman<br>Mohd Faizal Bin Md. Jaafar<br>Mohammad Amirulkhairi Bin Zubir<br>Rokiah Binti Othman<br>Norhaiza Binti Ghazali<br>Shariza Binti Mat Aris

