Mathematics for Management

Chapter 1: Functions

by
Nor Alisa Mohd Damanhuri
Faculty of Industrial Sciences & Technology
noralisa@ump.edu.my
Content:

- 1.0 Introduction
- 1.1 Functions
- 1.2 Special Functions
- 1.3 Combination of Functions
- 1.4 Composition of Functions
- 1.5 Inverse Functions
Expected Outcome:

Upon the completion of this course, students will have the ability to:

1. Obtain the domain, function values, equality of function and difference quotient of a function.
2. Identify the types of special functions i.e. constant functions, polynomial functions, rational functions, case-defined function, and absolute value function.
3. Find the solution of combination of functions, composition of functions and inverse functions.
1.0 Introduction

Definition:

- A **function** is a relationship in which each input number is paired with **exactly one** output number.

- The set of all input numbers is called the **domain** of the function (independent variable)

- The set of all output numbers is called the **range** (dependent variable)
1.1 Functions

\[y = f(x) \]

Output	Name of Function	Input

Mathematics for Management by Nor Alisa Mohd Damanhuri

Communitising Technology
Domain

Domain is the set of all input numbers

Three different cases of domain:

1. \[f(x) = \frac{x}{x^2 + x - 6} \]

 \[x^2 + x - 6 \neq 0 \]

 \[(x - 2)(x + 3) \neq 0 \]

 \[x \neq 2, -3 \]

 Domain: All real numbers except 2 and -1

Fractional functions
(The denominator should not be equal to zero)
Domain

2

\[g(k) = \sqrt{2k - 5} \]

\[2k - 5 \geq 0 \]

\[2t \geq 5 \]

\[t \geq \frac{5}{2} \]

Domain: \(\left[\frac{5}{2}, \infty \right) \)

Square root functions
(Under the square root, all numbers should be in positive)

3

\[g(x) = 6x^2 - x + 7 \]

Domain: All real numbers

Polynomial functions
(all numbers can be as an input)
Function Values

Function values is the output of the function corresponding to the input

Example 1.1

Let \(g(p) = 3p^2 - p + 5 \) find \(g(x), g(c^2), g(k + h) \)

Solution:

\[
g(z) = 3z^2 - z + 5
\]

\[
g(r^2) = 3(r^2)^2 - r^2 + 5 = 3r^4 - r^2 + 5
\]

\[
g(x + h) = 3(x + h)^2 - (x + h) + 5
\]

\[
= 3(x^2 + 2hx + h^2) - x - h + 5
\]

\[
= 3x^2 + 6hx + 3h^2 - x - h + 5
\]
Exercises

Function values is the output of the function corresponding to the input

Example 1.1

Let \(g(z) = 3z^2 - z + 5 \) find \(g(x), g(h^2), g(k + h) \)

Solution: \(g(x) = 3x^2 - x + 5 \)

\[
\begin{align*}
g(h^2) &= 3(h^2)^2 - h^2 + 5 = 3h^4 - h^2 + 5 \\
g(k + h) &= 3(k + h)^2 - (k + h) + 5 \\
&= 3(k^2 + 2hk + h^2) - k - h + 5 \\
&= 3k^2 + 6hk + 3h^2 - k - h + 5
\end{align*}
\]
Find the **domain** and the **function values** for the following functions:

(a) \(f(x) = \sqrt{x + 8}; \ f(3), f(8), f(-4) \)
(b) \(g(x) = x^3 + x^2; \ g(2), g(-1), g(t) \)
(c) \(h(x) = \frac{1}{x - 6} \)
Equality of Functions

To say that two functions \(f \) and \(g \) are equal, denoted \(f = g \), is to say that

- the domain of \(f \) = domain of \(g \)
- for every \(x \) in the domain of \(f \) and \(g \), output \(f(x) = g(x) \)
Example:

Determine whether the following functions are equal.

(a) \(f(x) = (x + 1)^2 \) and \(g(x) = x^2 + 2x + 1 \)

(b) \(f(x) = x^2 \) and \(g(x) = x^2 \) for \(x \geq 0 \)
SOLUTION:

(a) Domain $f(x) = \text{all real numbers.}$
Domain $g(x) = \text{all real numbers.}$

Therefore, Domain $f(x) = \text{Domain } g(x)$

\[f(x) = (x+1)^2 \]
\[= x^2 + 2x + 1 \]

\[g(x) = x^2 + 2x + 1 \]

\[\therefore f(x) = g(x) \]

Therefore, these two functions are equal.

(b) If we have $f(x) = x^2$, with no explicit mention of domain, and $g(x) = x^2$ for $x \geq 0$, then domain $f(x) \neq g(x)$. Here the domain of f is all real numbers and the domain for g is $[0, \infty)$. Therefore, these two functions are not equal.
Exercises:

Determine whether the following functions are equal.

(a) \(f(x) = (x+1)^2 \) and \(g(x) = x + 2 \)

(b) \(g(x) = x + 2 \) and \(k(x) = \begin{cases} x + 2 & \text{if } x \neq 1 \\ 3 & \text{if } x = 1 \end{cases} \)
DIFFERENT QUOTIENT

The difference quotient of a function is an important mathematical concept. The expression is

$$\frac{f(x+h) - f(x)}{h}$$

Example: If $f(x) = x^2$, find $\frac{f(x+h) - f(x)}{h}$

$$\frac{f(x+h) - f(x)}{h} = \frac{(x+h)^2 - x^2}{h}$$

$$= \frac{x^2 + 2hx + h^2 - x^2}{h}$$

$$= \frac{2hx + h^2}{h}$$

$$= \frac{h(2x + h)}{h}$$

$$= 2x + h$$
Different Quotient

The difference quotient of a function is an important mathematical concept. The expression is

\[\frac{f(x + h) - f(x)}{h} \]

Example: If \(f(x) = x^2 \) find

\[\frac{f(x + h) - f(x)}{h} = \frac{(x + h)^2 - x^2}{h} \]

\[= \frac{x^2 + 2hx + h^2 - x^2}{h} \]

\[= \frac{2hx + h^2}{h} = \frac{h(2x + h)}{h} = 2x + h \]
Exercises:

Find the **difference quotient** of the following functions.

(a) Find \(\frac{-f(x+h)+f(x)}{h} \) if \(f(x) = \frac{x}{2} + 1 \)

(b) If \(f(x) = 4x - 5 \), find \(\frac{f(x+2h) - f(x)}{4h} \).
Special Functions

• Constant Functions
• Polynomial Functions
• Rational Functions
• Case-Defined Function
• Absolute-Value Function
Constant Functions

- A function of the form $h(x) = c$, where c is a constant, is called a constant function.

Let $h(x) = 7$, so

- $h(12) = 7$,
- $h(-385) = 7$,
- $h(x + 5) = 7$

We call h a constant function because all the function value are the same.
In general, a function of the form

\[f(x) = c_n x^n + c_{n-1} x^{n-1} + \ldots + c_1 x + c_0 \]

Where \(n \) is a nonnegative integer and \(c_n, c_{n-1}, \ldots, c_0 \) are constant with \(c_n \neq 0 \), is called a polynomial function.
Example:

(a) \(f(x) = x^3 - 6x^2 + 7 \) → is a polynomial function of degree 3 with leading coefficient 1.

(b) \(g(x) = \frac{2x}{3} \) → is a linear function with leading coefficient \(\frac{2}{3} \).

(c) \(f(x) = \frac{2}{x^3} \) → is NOT a polynomial function. Because \(f(x) = x^{-3} \) and the exponent for \(x \) is not a nonnegative integer, this function does not have the proper form for a polynomial.
A function that is a quotient of polynomial functions is called a rational function.

\(f(x) = \frac{x^2 - 6x}{x + 5} \rightarrow \) is a rational function, since the numerator and denominator are each polynomials. Note that this rational function is not defined for \(x = 5 \).

\(g(x) = 2x + 3 \rightarrow \) is a rational function, since \(2x + 3 = \frac{2x + 3}{1} \). In fact, every polynomial function is also a rational function.
Case-Defined Function

Let

\[F(s) = \begin{cases}
1 & \text{if } -3 \leq s \leq 2 \\
0 & \text{if } 2 \leq s \leq 3 \\
s - 3 & \text{if } 3 < s \leq 8
\end{cases} \]

This is called a case-defined function because the rule for specifying it is given by rules for each of several disjoint cases.
Absolute-Value Function

The function \(|x| \) is called the absolute-value function. \(|x| \) is defined by

\[
|x| = \begin{cases}
 x & \text{if } x \geq 0 \\
 -x & \text{if } x < 0
\end{cases}
\]
Classify each of the special function. Then, find the function values.

(a) \(f(x) = 8; f(2), f(t+8), f(-\sqrt{17}) \)

(b) \(H(x) = \frac{1}{\pi} - 3x^5 + 2x^6 + x^7; H(2), H(-2), H(1) \)

(c) \(h(x) = \frac{x^2 + x}{x^3 + 4}; h(2), h(t+8), h(0) \)

(d) \(G(\theta) = \begin{cases} 2\theta - 5 & \text{if } \theta \leq 2 \\ \theta^2 - 3\theta + 1 & \text{if } \theta > 2 \end{cases} \)

\(G(3), G(-3), G(2) \)

(e) \(g(x) = |x - 3|; g(10), g(3), g(-3) \)
Combinations of Functions

• There are several ways of combining two functions to create a new function. For example, we can combine the functions by addition, subtraction, multiplication, division, multiplication by a constant, and composition.

• Suppose f and g are the functions given by

\[f(x) = x^3 \quad \text{and} \quad g(x) = 5x \]

Adding $f(x)$ and $g(x)$ gives

\[f(x) + g(x) = x^3 + 5x \]
• In general, for any function \(f \) and \(g \), we define the sum \(f + g \), the difference \(f - g \), the product \(fg \) and the quotient \(f/g \) and scalar product \(cf(x) \) as follows:

\[
\begin{align*}
 \text{i.} & \quad (f + g)(x) = f(x) + g(x) \\
 \text{ii.} & \quad (f - g)(x) = f(x) - g(x) \\
 \text{iii.} & \quad (fg)(x) = f(x) \cdot g(x) \\
 \text{iv.} & \quad \frac{f}{g}(x) = \frac{f(x)}{g(x)}, \quad g(x) \neq 0 \\
 \text{v.} & \quad (cf)(x) = c \cdot f(x)
\end{align*}
\]
Example:

If \(f(x) = x^2 \) and \(g(x) = 3x \), therefore we have

Solution:

(a) \((f + g)(x) = f(x) + g(x) = x^2 + 3x\)
(b) \((f - g)(x) = f(x) - g(x) = x^2 - 3x\)
(c) \((fg)(x) = f(x) \cdot g(x) = x^2(3x) = 3x^3\)
(d) \(\frac{f}{g}(x) = \frac{f(x)}{g(x)} = \frac{x^2}{3x} = \frac{x}{3} \quad \text{for} \quad x \neq 0\)
(e) \((\sqrt{2}f)(x) = \sqrt{2}f(x) = \sqrt{2}x^2\)
Exercises:

If \(f(x) = 3x - 1 \) and \(g(x) = x^2 + 3x \), find

(a) \((f + g)(3) \)
(b) \((f - g)(\frac{1}{2}) \)
(c) \((fg)(-\frac{1}{2}) \)
(d) \(\frac{f}{g}(-2) \)
(e) \((3f)(-\sqrt{2}) \)
Composition of Functions

Definition:

If f and g are functions, the composite of f with g is the function $f \circ g$ defined by

$$(f \circ g)(x) = f(g(x))$$

where the domain of $f \circ g$ is the set of all those x in the domain of g such that $g(x)$ is in the domain of f.
Example:

If \(f(x) = \sqrt{x} \) and \(g(x) = x + 1 \), find

(a) \((f \circ g)(x)\), then \((f \circ g)(8)\).

(b) \((g \circ f)(x)\), then \((g \circ f)\left(\frac{1}{4}\right)\).
Solution:

(a) \((f \circ g)(x) = f(g(x))\)
\[= f(x+1)\]
\[= \sqrt{x+1}\]

The domain is all \(x \geq -1\), or equivalently, the interval \([-1, \infty)\).

When \(x = 8\), then \((f \circ g)(8) = \sqrt{8+1} = \sqrt{9} = 3\).

(b) \((g \circ f)(x) = g(f(x))\)
\[= g(\sqrt{x})\]
\[= \sqrt{x} + 1\]

The domain is all \(x \geq 0\), or equivalently, the interval \([0, \infty)\).

When \(x = \frac{1}{4}\), then \((g \circ f)\left(\frac{1}{4}\right) = \sqrt{\frac{1}{4}} + 1 = \frac{1}{2} + 1 = \frac{3}{2}\).
Exercises:

If \(f(x) = 2x + 1 \) and \(g(x) = \frac{3}{2x + 1} \), find

(a) \((g \circ f)(-2) \)

(b) \((f \circ g)\left(\frac{1}{2}\right) \)

.
Inverse Functions

• Only exist for one-to-one function

\[f(x) = y \Rightarrow f^{-1}(y) = x \]

• Remarks: To verify that is \(f^{-1} \) the inverse of \(f \), show that

\[f^{-1}[f(x)] = f[f^{-1}(x)] = x \]
A function f that satisfies

for all a and b, if $f(a) = f(b)$, then $a = b$

is called **one-to-one** function.

3 steps to find the inverse of a function, f:

STEP 1: Replace $f(x)$ with y

STEP 2: Solve for x in term of y obtaining $x = g(y)$

STEP 3: Replace x with $f^{-1}(x)$. Then, $f^{-1}(x) = g(x)$
Example:

If \(f(x) = (x - 1)^2 \) for \(x \geq 1 \), find \(f^{-1}(x) \).

Solution:

Let \(y = (x - 1)^2 \), for \(x \geq 1 \).
Then, \(x - 1 = \sqrt{y} \) and hence \(x = \sqrt{y} + 1 \).
Therefore, we have \(f^{-1}(x) = \sqrt{x} + 1 \).

Check:

\[
\begin{align*}
 f^{-1}(f(x)) &= f\left((x - 1)^2\right) = \sqrt{(x - 1)^2} + 1 \\
 &= x - 1 + 1 = x
\end{align*}
\]

\[
\begin{align*}
 f(f^{-1}(x)) &= f\left(\sqrt{x} + 1\right) = \left(\sqrt{x} + 1\right)^2 \\
 &= (\sqrt{x} + 1)^2 - 2(\sqrt{x} + 1) + 1 = x
\end{align*}
\]

Therefore, the inverse of function \(f \) given above is \(f^{-1}(x) = \sqrt{x} + 1 \).
Exercises:

Find the inverse of the given function.

(a) \(f(x) = \frac{3x-1}{x+5} \)

(b) \(g(x) = (2x+8)^3 \)
THE END

~THANK YOU~
Author Information

noralisa@ump.edu.my