Antenna & Propagation

Yagi Uda

by
Nor Hadzfizah Binti Mohd Radi
Faculty of Electric & Electronics Engineering
hadzfizah@ump.edu.my
In this chapter, the student will be exposed about Yagi Uda antenna. Some of that are, basic elements in Yagi Uda, the radiation pattern, the characteristics, calculation related to the designing of Yagi Uda and its parameters.
At the end of this course student should be able to:

- Understand the operation of Yagi Uda as broadband antenna.
- Know how to calculate the dimensions of Yagi Uda and related parameters.
- Understand the features, advantages and disadvantages of Yagi Uda.
Outline

Introduction

Radiation Pattern

General Characteristics

Yagi Uda Calculations

Advantages and Disadvantages
Introduction

• Often referred to as "Yagi" antennas. It is a high gain antennas.

• VHF and UHF TV & FM radio reception.

• HF-VHF-UHF (30 MHz – 3 GHz) point-to-point wireless communications
 – long-range wireless communications
 – base-station for two-way voice and/or data communications
 – telemetry of sensor data

Source: https://th.wikipedia.org

Yagi Uda by Nor Hadzfizah Mohd Radi
History

• The antenna was first invented by a Japanese Prof. S. Uda in early 1940’s.
• Afterwards it was described in English by Prof. H. Yagi.
• Hence the name of ‘Yagi-Uda’ was given after their names.
• Prof. Uda performed several experiments. Starts with single reflector, a driven and a single director and up to 30 directors.
• He found that highest gain is possible with the reflector of length equal to $\lambda/2$ located at a distance $\lambda/4$ from the driven element, along with director of length approx. 10% less than $\lambda/2$ located at a distance $\lambda/3$ from the driven element.
Basic Yagi-Uda and its Radiation Pattern

- Consists of a driven element, one reflector and one director.
- The driven is a resonant half wave dipole made of metallic rod.
- All elements are placed parallel and close to each other.
- This antenna radiation pattern is called directional antenna.

![Diagram of Yagi-Uda antenna with labels: REFLECTOR 0.55\(\lambda\), DRIVER 0.5\(\lambda\), DIRECTOR 0.45\(\lambda\). The direction of maximum radiation is indicated.]

Yagi-Uda by Nor Hadzfizah Mohd Radi

Communitising Technology
Basic structure is an array of dipoles made up of:

- usually one reflector element (parasitic)
- a driven element
- one or more director elements (parasitic)
- A "balun" is required for connection to a coax cable.

A balun is required for connection to a coax cable.

Image credit: Yagi Uda by Nor Hadzfizah Mohd Radi
The length of the different elements can be obtained by using the following formula:

<table>
<thead>
<tr>
<th>Element</th>
<th>Length Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflectors Length (meter)</td>
<td>(\frac{152}{f(\text{MHz})})</td>
</tr>
<tr>
<td>Driven Length (meter)</td>
<td>(\frac{143}{f(\text{MHz})})</td>
</tr>
<tr>
<td>Director Length (meter)</td>
<td>(\frac{137}{f(\text{MHz})})</td>
</tr>
</tbody>
</table>
The Elements

Reflector
- Reflects the signal coming from front side
- Totally attenuates the transmission signals from back sides

Driven
- An active element that electrically connected to the receiver or transmitter.

Director
- Retransmitted the signal collected from front side towards dipole
- It attenuates the signal coming from sides and back side
Radiation Pattern

Reflector length

Back lobe (Minimum directivity)

Director Length

Side Lobes (Very small directivity)

Dipole length ($\lambda/2$)

Main lobe (Maximum directivity)
Characteristic of Yagi-Uda

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Elements: one reflector, one driven and one or more directors</td>
<td>Fixed frequency operated</td>
</tr>
<tr>
<td></td>
<td>The Bandwidth of 2% and 3% can be easily achieved (if spacing between the elements is between 0.1 to 1.5(\lambda))</td>
</tr>
<tr>
<td></td>
<td>Gain of Yagi-Uda is about 7 to 8dB and F/B ration is 20dB</td>
</tr>
<tr>
<td></td>
<td>Light weight, low cost, and simple feeding.</td>
</tr>
<tr>
<td></td>
<td>To get greater directivity more number of director are used. (range from 2 to 40)</td>
</tr>
<tr>
<td></td>
<td>It also called as superdirective or super gain antennas</td>
</tr>
</tbody>
</table>
Yagi-Uda Calculations

\[\lambda = \frac{c}{f} \]

Length of dipole (driven)
\[\lambda = \frac{150}{f(MHz)} \]

In practice, the antenna elements should be 5% and 7% shorter than obtained using formula

Therefore, Length of dipole (driven), Dr
\[\frac{143}{f(MHz)} \]

Length of Reflector, R
\[\frac{152}{f(MHz)} \]

Length of 1st Director, \[\frac{137}{f(MHz)} \]

Spacing between R and Dr:
\[0.25\lambda = \frac{75}{f(MHz)} \]

Spacing between Dr and \[\frac{40}{f(MHz)} \]

Spacing between \[\frac{38}{f(MHz)} \]

More number of directors, length of subsequent director shortens by 2.5%

Yagi Uda by
Nor Hadzfizah Mohd Radi
Advantages and Disadvantages

Advantages
• Excellent sensitivity
• F/B ratio is excellent
• Useful as transmitting antenna at HF for TV reception
• Almost unidirectional radiation pattern
• By using of folded dipole: the antenna is broadband

Disadvantages
• Gain limited
• Bandwidth limited
• The gain of antenna increases with reflector and director
References

Nor Hadzfizah Binti Mohd Radi
Lecturer
FKEE, UMP
e-mail
hadzfizah@ump.edu.my