Chapter 3: Food Packaging

Expected outcome:

a) Able to discuss the roles of food packaging
b) Able to characterize of various materials of food packaging
Content

• Introduction
• Functions of food packaging
• Issues in food packaging
• Packaging materials
• MAP
• The enclosing of food requires protection from tempering whether by physical, chemical or biological means

• Communicate nutritional information

Photo credit: R L Sheehan; Wikipedia; PD
Function of food packaging

• Efficient delivery to the customer
• protecting the food → physical, chemical and biological damages

Photo credit: Gisela Francisco; Wikipedia; CC BY 3.0

Photo credit: Wikipedysta:Julo; Wikimedia; PD
Function of food packaging

• Physical barrier to oxygen, moisture, volatile chemical compounds, and microorganisms
• providing convenience to the customer → Microwavability, resealability, ease of use
• conveying product information → product contents, nutritional values, preparation instruction

Photo credit: Sarah Lee; Dailymail; PD
Issues in food packaging

• Physical damage
 • Distribution environment handling, storage, transportation
 • Shock, vibration and compression
 • Shock – during handling drop height based on size, weight
 • Vibration – during transportation
 • Compression – warehousing and shipping
 • Product fragility

Photo credit: Paul Sullivan; flicker; CC BY-ND 2.0

Photo credit: Goldmund100; Wikimedia; CC Attribution 3.0
Issues in food packaging

• Food-package interaction
 • Chemical and physical interaction
 • Chemical – corrosion of the material
 • Physical – mass transport ➔ food and package

• Migration – volatile compounds ➔ package to food

• Scalping – volatile compounds ➔ food to package

• Packaging and waste disposal

Photo credit: Howcheng; Wikipedia; CC BY-SA 3.0
Issues in food packaging

• Regulation ➔ packing, shipping, selling, advertising, grading, standardizing, marking
 • Weight – consumer is not misled/deceived by the printing or appearance of the package
 • Adulteration – prevent direct or indirect addition of foreign components
 • Public safety – temper-resistance package

Photo credit: StickerYou; Stickeryou; PD
Issues in food packaging

Other considerations

- Suitable packaging machinery
- Economic consideration
- Good packaging graphics

Photo credit: Selo; Selo; PD

farhanmsaid@ocw,
farhan_msaid@yahoo.co.uk
Packaging materials

• Basic material ➔ glass, metal, paper and plastic
• Each has both advantages and disadvantages
• Selection ➔ functional requirements, economics of specific applications
• To optimize performance and cost ➔ food packages use > 1 type of package material
Packaging materials

Glass

- Excellent barrier → protecting from oxygen and moisture
- Excellent visibility and an image of cleanliness
- Major constituents → SiO$_2$, Na$_2$O and CaO
- Properties of glass (e.g., strength, transparency, moldability) can be modified → composition of these constituents
Packaging materials

Glass

• Considerations in designing glass containers
 • Mechanical strength
 • Thermal strength
 • Optical properties

Photo credit: Isaac Fletcher; vertassets; PD
Packaging materials

- Excellent protection of oxygen, moisture and light
- Most common - Steel and aluminum
- Aluminum foil and metalized films
 - Aluminum foil food-packaging application, such as pouches
 - Metalized films – very thin layer of aluminum (vapor deposited) on a plastic film
Packaging materials

Metal - aluminum

• Odorless, tasteless, non-toxic
• Provides a very good barrier to moisture, gases and light
• Retains the volatile flavors.
• Foil is fragile → protection from torn or punctured.

Photo credit Toronto; Toronto; PD
Packaging materials

- Made of wood fibers ➔ cellulose, hemicellulose, and polymeric residues
- Good mechanical strength ➔ protect physical damage
- Poor gas-barrier properties and mechanical strength
- Often coated with aluminum or plastic for better performance
Packaging materials

Plastic

- Polymers/long chain macromolecules → molded, extruded and cast → films, sheet and containers
- Broad range of gas-barrier properties → permeability
- Permeability → plastic material, permeate gas, temperature, and RH
- Versatility of packaging many different foods

Photo credit print-packaging; PD

farhanmsaid@ocw, farhan_msaid@yahoo.co.uk
Packaging materials

• Polyethylene (PE)
 • Most frequently used in food packaging – low cost, easy process and good mechanical properties
 • HDPE, LDPE and LLDPE
 • HDPE (0.94 – 0.97 g/cm³, 135°C)
 • greater tensile strength, hardness and better chemical resistance
 • blow-molded bottles, food containers, bags
 • LDPE (0.91 - 0.93 g/cm³, 110°C)
 • Soft, flexible and stretchable
 • Films for fresh produce and baked goods
 • Good clarity and sealability
 • LLDPE, density same as LDPE
 • Has clarity and heat sealability of LDPE and strength and toughness of HDPE
Packaging materials

- **Polypropylene (PP)**
 - ↑ melting point (165°C)
 - ↓ density (0.9 kg/m³) but higher tensile strength, stiffness and hardness than PE
 - ➔ hot filling, retorting, good heat seal strength, excellent clarity

- **Polystyrene (PS)**
 - Excellent clarity, hard, low impact strength
 - ↓ gas barrier, ↓ melting point (88°C)
 - Cups, dishware, closures, windows in paperboard boxes ➔ display products
Packaging materials

- Polyethylene terephthalate (PET)
 - Mostly in injection blow-molded bottles for carbonated soft drinks, water, edible oil, juices
 - Stronger, clearer and better gas barrier than HDPE, more expensive
 - Films that have high strength, high melting point (267°C), high scuff resistance, good clarity, good printing characteristic, excellent dimensional stability
 - Food trays used in microwave/oven

farhanmsaid@ocw,
farhan_msaid@yahoo.co.uk
Advantages and Disadvantages of Food Packaging Materials

<table>
<thead>
<tr>
<th>Materials</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass</td>
<td>Excellent barrier → oxygen & moisture
Chemically inert
Transparent</td>
<td>Easily breakable
Relatively heavier</td>
</tr>
<tr>
<td>Metal</td>
<td>Excellent barrier → oxygen, moisture, light
Good mechanical strength & durability
Good thermal stability</td>
<td>Susceptible to corrosion
Metal cans generally more difficult to open and reseal</td>
</tr>
<tr>
<td>Paper</td>
<td>Relatively inexpensive
Excellent printability
Lightweight</td>
<td>Poor gas and moisture barrier
Greatly reduced mechanical strength when wet</td>
</tr>
<tr>
<td>Plastic</td>
<td>More versatile
Can be formed easily into many shapes
Lightweight</td>
<td>More susceptible to migration and flavor-scalping problems</td>
</tr>
</tbody>
</table>
MAP

• Relatively new preservation technology
• Normal composition of air; 20.9% O$_2$, 78% N$_2$, 0.9% Ar, 0.03% CO$_2$
• MAP – normal composition of air is changed within a package, but the change is not constant due to product respiration and permeation of gas
• Normally involve the reduction of oxygen content and increase in level of carbon dioxide in the package headspace
• Always enhancement of refrigeration as preservation technology
MAP

• Methods of atmosphere modification
 • Passive modification
 • Used in fresh respiring fruits and vegetables
 • Film with a correct gas permeability
 • Atmosphere within the packaged product is modified; consumption of oxygen and generation of carbon dioxide through respiration of product and the permeation of gases
 • Depletion of oxygen to near ‘0’ leads to anaerobic respiration or fermentation → results in spoilage
MAP

• Active modification
 • Used in meat industry to extend shelf life, keeping quality
 • Film of low O_2 permeability, air is removed under vacuum, package is heat sealed
 • Headspace O_2 is reduced < 1%, CO_2 produced from tissue and microbiological respiration, may increase to 10 to 20%
 • \rightarrow Extend the shelf life of meat by inhibiting the growth of meat-spoilage microbes, particularly *Pseudomonas* and *Alternaria* species
 • Other method \rightarrow oxygen absorbent

Photo credit: Packaging Machinery; record; farhanmsaid@ocw, farhan_msaid@yahoo.co.uk